respect the close affinity of D pruinosa and D leichhardtu³ is substantiated 3a-Tigloyloxytropane has been reported previously from the roots only of Datura although it is a known constituent of the aerial parts of some Scopolia, Solandra, Duboisia and Anthocercis species. The isolation of littorine and cuscohygrine is consistent with their recently reported⁸ occurrence throughout the genus

EXPERIMENTAL

Cultivation Seedlings raised under glass, Nottingham, and subsequently transferred to open land Collection at the flowering and fruiting stage

Extraction of alkaloids Powdered plant material, Ca(OH), and H₂O (5 1 2) allowed to stand for 1 hr and then exhausted with Et2O, solvent removed from extract

Fractionation of alkaloids Aerial parts The basic residue from the extraction was submitted, in Et₂O, to kieselguhr supporting N-H₂SO₄ (2 1) Pigments were eluted with Et₂O, CHCl₃-soluble alkaloidal sulphates with CHCl₃, and other bases were recovered in CHCl₃ from the extruded column made alkaline with NH₄OH Subsequent fractionation of bases was effected on kieselguhr at pH 6 8 (typically kieselguhr 25 g. 0.5 M-phosphate buffer solution 12.5 ml) with light petrol b p 40-60° (elution of apohyoscine, tigloidine, apoatropine), Et₂O (elution of hyoscine, northyoscine and 3α-tigloyloxytropane), CHCl₃ (elution of littorine, atropine and noratropine) and ammoniacal CHCl₃ (elution of tropine and \(\psi\)-tropine) as eluants Repeated chromatography was often necessary to purify individual alkaloids. Roots. The ether extract was fractionated (kieselguhr 10 g, 0 5 M-phosphate buffer solution, pH 6 8, 5 ml) and the alkaloids eluted as above. $3\alpha.6\beta$ -ditigloyloxytropane and $3\alpha.6\beta$ -ditigloyloxytropan- 7β -ol were obtained in the initial light petrol eluate and were separated on kieselguhr at pH 5 6 Cuscohygrine was isolated from the ammoniacal CHCl₃ fraction

- ³ EVANS, W C and STEVENSON, N A (1962) J Pharm Pharmacol 14, 107 T
- ⁴ GHANI, A (1971) Ph D Thesis, University of Nottingham
 ⁵ EVANS, W C, GHANI, A and WOOLLEY, V A (1972) Phytochemistry 11, 470
 ⁶ COULSEN, J F and GRIFFIN, W J (1967) Planta Med 15, 459
- ⁷ Evans, W C and Treagust, P G (1973) Phytochemistry 12, in press
- ⁸ Evans, W. C., Ghani, A. and Woolley, V. A. (1972) Phytochemistry 11, 2527

Phytochemistry, 1973, Vol 12, pp 2078 to 2079 Pergamon Press Printed in England

(24S)-ETHYLCHOLESTA-5,22,25-TRIENE-3β-OL FROM FOUR **CLERODENDRON SPECIES**

STHANUSUBRAMANIA SANKARA SUBRAMANIAN, ARAKUZHA GOPALAN RAMACHANDRAN NAIR and TIRUMALAI NALLAN CHAKRAVARTI VEDANTHAM

Department of Chemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry-605006, India

(Received 27 February 1973 Accepted 1 March 1973)

Key Word Index—Clerodendron sp, Verbenaceae, (24S)-ethylcholesta-5,22,25-triene-3β-ol

Plants Clerodendrum indicum L (Syn Clerodendron siphonanthus R Br), C infortunatum L, C phlomides L, and C nerufolium Wall (voucher specimen Nos 14/72, 15/72, 2/72 and 11/71 respectively, deposited at Jipmer) Uses. Medicinal 1 Previous work Flavonoids of leaves 2-4

Present work A systematic examination of the C₆H₆ extractives of the leaves of all the above Clerodendron species revealed the presence of a sterol, this was separated by adsorption chromatography over neutral Al₂O₃ using light petrol, C₆H₆ and CHCl₃ in different proportions successively, the C₆H₆ eluate yielded colourless needless, C₂₉H₄₆O, mp 151-153°. Its acetate, m p 147-148°, had the following spectral characteristics ν_{KBr}^{max} 1728 (ester), 1640 and 882 (=CH₂) and 957 cm⁻¹ (trans disubstituted double bond) NMR (δ values) 0 70 (s, 3H, $C_{18} \rightarrow Me$), 0 83 (t, J 7 Hz, 3H, $-CH_2-CH_3$) 0 99 (d, J 6 Hz, 3H, $-CH-CH_3$), 1 03 (s, 3H, $C_{19} \rightarrow Me$), 1 63 (s, 3H, $C_{27} \rightarrow Me$), 2 02 (s, 3H, -O-CO-Me), 4.03 (m, 1H, C₃-H), 4.69 (s, br, 2H, > C=CH₂), 5.23 (m, 2H, -CH=CH) and 5.40 (m, 1H, C₆-H) The parent compound was identified as (24S)-ethylcholesta-5,22,25-triene-38-ol and the identity was confirmed by direct comparison, m m p and co-TLC (AgNO₃ impregnated silica gel) with an authentic specimen

Comment The title compound was isolated for the first time as a natural product by Bolger et al from Clerodendrum campbellu⁵ and subsequently by Joshi and Kamat from Enhydra fluctuans (Compositae) 6 The present report of its occurrence from four more Clerodendron species suggests that this sterol may be considered as a possible chemotaxonomic marker of the genus Clerodendron

Acknowledgements-We thank Professor T R Govindachari for the spectral data, Dr B S Joshi for an authentic specimen of the sterol and the Principal, JIPMER, for encouragement.

- ¹ Anon (1950) Wealth of India, Raw Materials, Vol II, pp 231-232, CSIR, New Delhi
- Subramanian, S S and Nair, A G R (1973) Phytochemistry 12, 1195
 Subramanian, S S and Nair, A G R (1972) Phytochemistry 11, 3095
- ⁴ SUBRAMANIAN, S S and NAIR, A G R (1972) J Indian Chem Soc 49, 1061
- ⁵ BOLGER, L. M., REES, H. H., GHISALBERTI, E. L., GOAD, L. J. and GOODWIN, T. W. (1970) Biochem J. 118, 197.
- ⁶ JOSHI, B S and KAMAT, V N (1972) Ind J Chem 10, 771

Phytochemistry, 1973, Vol. 12, pp. 2079 to 2080 Pergamon Press Printed in England

ZYGACINE AND ZYGADENINE: THE MAJOR ALKALOIDS FROM ZYGADENUS GRAMINEUS

Terry J Gilbertson*

College of Pharmacy, South Dakota State University, Brookings, SD 57006, USA

(Received 27 February 1973 Accepted 16 March 1973)

Key Word Index-Zygadenus grammeus, Lilliaceae, ceveratrum alkaloids, zygacine, zygadenine

Plant Zygadenus gramineus-Liliaceae Source Antelope Range Experimental Station, Buffalo, South Dakota (voucher specimen is deposited in the College of Pharmacy).

*Present address. The Upjohn Company, Kalamazoo, MI 40091, US A